a2 United States Patent
Pham

US009459118B2

10) Patent No.: US 9,459,118 B2
45) Date of Patent: Oct. 4, 2016

(54) ADJUSTING STEP COUNT TO

(71)
(72)
(73)

")

@
(22)

(65)

(1)
(52)

(58)

/

COMPENSATE FOR ARM SWING

Applicant: Apple Inc., Cupertino, CA (US)

Inventor: Hung A. Pham, Oakland, CA (US)

Assignee: Apple Inc., Cupertino, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 633 days.

Appl. No.: 13/913,276

Filed: Jun. 7, 2013

Prior Publication Data

US 2014/0365169 Al Dec. 11, 2014

Int. CL.

GOIC 22/00 (2006.01)

U.S. CL

CPC e, GOIC 22/006 (2013.01)
Field of Classification Search

CPC i GO1C 22/006; A61B 5/7235

502 506 1
/

USPC ... 702/74, 75, 78, 140, 141, 160, 175,
702/176, 177; 600/301, 595
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2013/0085700 Al* 42013 Modiccoeoenine GO1C 22/006
702/104
2013/0085711 Al* 4/2013 Modicoeevnnine GO1C 22/006
702/141

* cited by examiner

Primary Examiner — John H Le
(74) Attorney, Agent, or Firm — Fish & Richardson P.C.

57 ABSTRACT

In some implementations, a mobile device can receive a
motion signal from a motion sensor on the mobile device.
The mobile device can determine a step count based on the
motion signal. The mobile device can transform the motion
signal from a time domain signal into a frequency domain
signal. The mobile device can determine a dominant peak
and harmonic peaks of the motion signal within a pedestrian
frequency band. The mobile device can determine that the
dominant peak corresponds to an arm swing of a user and
adjust the step count to compensate for the arm swing.

18 Claims, 10 Drawing Sheets

500

3

508‘(510 512 K

Motion T'Eansform to Analyze _ Double Step
Signal ®| Frequency Peaks > Count
Domain

y
Determine

Record Step|

Step Count

!

504

Count

I

514

U.S. Patent Oct. 4, 2016 Sheet 1 of 10 US 9,459,118 B2

FIG. 1

U.S. Patent Oct. 4, 2016 Sheet 2 of 10 US 9,459,118 B2

Frequency

2(3)

J 208
|
I\
I:step
210

FIG. 2

206

202 /

Jamod

204 7\

U.S. Patent Oct. 4, 2016 Sheet 3 of 10 US 9,459,118 B2

3(3)

\ Frequency
Fstep 312

FIG. 3

314

Jamod

304 7\

U.S. Patent Oct. 4, 2016 Sheet 4 of 10 US 9,459,118 B2

4(3)

/S_ 408
\ Frequency
Fstep 414

FIG. 4

412

5 410
|
402 / Fswing

406

Jamod

404 |

US 9,459,118 B2

Sheet 5 of 10

Oct. 4, 2016

U.S. Patent

143°]
vl

wunoo

G "Old

¥0S

[

unoo
deys a|gnog

NN_‘m

do)g piooay

ON

¢pajsied

soA Buimg way

oLs

00§

syead

ozAjeuy

MI 809

urewoq
Aoauanbai4
0) wJojsuel|

juno9 deig
aulwJeeQg

-

MI 90S

|eubis
uonopw

¢0S

US 9,459,118 B2

Sheet 6 of 10

Oct. 4, 2016

U.S. Patent

syead

9 OlId

SHead pPuld [e———-

ulewoq
Aouanbalg
0] WJojsuel |

-

€ MOPUIAA |—

MI 029

Nv_\o

abus

MI <29

009

SHead pPuld je———

ulewoq
Aouanbalg
0] WJojsuel |

MI 809

-

Z MOPUIAA |

/le_\w

Yz

syead pulq je——]

ulewoq
Aouanbalg
0] WJojsuel |

MI 909

-

| MOPUIAA |t——

dlw_\w

/Nlo_\w

MI 709

leubis
uonon
ulelgo

MI ¢09

U.S. Patent Oct. 4, 2016 Sheet 7 of 10 US 9,459,118 B2

7(3)
Frequency

718

708

FIG. 7

714

706
702 /

Jamod

704 7\

U.S. Patent Oct. 4, 2016 Sheet 8 of 10 US 9,459,118 B2

API-Calling Components
830

800

8327 | APICalls, Return Values,
Parameters Parameters S 822

Application Programming Interface
820

API-Implementing Components
810

FIG. 8

US 9,459,118 B2

Sheet 9 of 10

Oct. 4, 2016

U.S. Patent

006

6 9Old
816
(SO) waisAs bunesadp
26 026
Z1dv SO L 1dV SO
A q A
' '
806 906
g 92IAI8S \/ 92IAIOS
716 Zi6 016
Z |dV g 9dInes | 1dV g 921AleS EVAAINELS
706 206
Z uoleo|ddy | uopjeol|ddy

U.S. Patent Oct. 4, 2016 Sheet 10 of 10 US 9,459,118 B2

Operating System Instructions 1000
Communication Instructions _S_ 1054 j

GUI Instruchons. . Is 1058
Sensor Processing Instructions

1060
Phone Instructions 1062
Electronic Messaging Instructions 1064 j_ 1016
Web Browsing Instructions S 1066 » Other Sensor(s)
Media Processing Instructions
NSS/Navication | - 1068 1010
GNSS/ awgatlo.n nstructions _S_ 1070 5 Motion Sensor j_
Camera Instructions 1072
Arm Swing Comp. Instructions —S— 1074 j 1012
Other Instructions —S_ Light Sensor
)" 1014
| Memory Il » Proximity Sensor
T 1050 g
XYYy " N Camera N
Memory Interface 1006 _L C+ | Subsystem i’
< 1 | perioherals Wireless 1022
1002 < > Intgrface «+»| Communication j 1024
A 4 Subsystem(s)
j‘ 1004 1028
Processor(s
R «——>»| Audio Subsystem :qu
7\ 1030

1026 _(|C
\ 4

5— 1042 IO Subsystem 5— 1044

5‘ 1040

Touch-Surface Controller Other Input Controller(s)

b [3

Y Y

Other Input / Control
{ Touch Surface Devices \2

1046 1048

FIG. 10

US 9,459,118 B2

1
ADJUSTING STEP COUNT TO
COMPENSATE FOR ARM SWING

TECHNICAL FIELD

The disclosure generally relates to techniques for estimat-
ing step count by a mobile device.

BACKGROUND

Mobile devices often include motion sensors to detect
when and how a mobile device is in moving. For example,
the mobile device can include an accelerometer that mea-
sures movement and generates motion signals describing the
movement of the mobile device. A mobile device with a
motion sensor can be configured with pedometer function-
ality (e.g., step counting) that analyzes the motion signals
generated by the mobile device’s motion sensors to deter-
mine when a user has taken a step.

SUMMARY

In some implementations, a mobile device can receive a
motion signal from a motion sensor on the mobile device.
The mobile device can determine a step count based on the
motion signal. The mobile device can transform the motion
signal from a time domain signal into a frequency domain
signal. The mobile device can determine a dominant peak
and harmonic peaks of the motion signal within a pedestrian
frequency band. The mobile device can determine that the
dominant peak corresponds to an arm swing of a user and
adjust the step count to compensate for the arm swing.

Particular implementations provide at least the following
advantages: The step count determined by a mobile device
can be corrected to compensate for the arm swing of a user
when the mobile device is worn on the user’s arm.

Details of one or more implementations are set forth in the
accompanying drawings and the description below. Other
features, aspects, and potential advantages will be apparent
from the description and drawings, and from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 illustrates an example of a user utilizing a step
counting function of a mobile device.

FIG. 2 illustrates an example graph of a frequency domain
motion signal generated when the mobile device is worn on
the torso of a user.

FIG. 3 illustrates an example graph of a frequency domain
motion signal generated when the mobile device is worn on
the arm of a user with a weak arm swing.

FIG. 4 illustrates an example graph of a frequency domain
motion signal generated when the mobile device is worn on
the arm of a user with a strong arm swing.

FIG. 5 illustrates an example process for adjusting a step
count to compensate for a user’s arm swing.

FIG. 6 illustrates an example process for generating a
composite frequency domain motion signal having “best
quality” peaks.

FIG. 7 illustrates an example graph demonstrating a “peak
quality” calculation.

FIG. 8 is a block diagram illustrating an example API
architecture, which can be used in some implementations.

FIG. 9 illustrates an example software stack that includes
various application programming interfaces.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 10 is a block diagram of an example computing
device that can implement the features and processes of
FIGS. 19.

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION
Overview

FIG. 1 illustrates an example of a user 100 utilizing a step
counting function of a mobile device. For example, user 100
can be holding or wearing a mobile device that is configured
with a step counting function (e.g., a pedometer). The step
counting function can receive signals from a motion sensor
of the mobile device and determine when user 100 takes a
step based on the motion signals received from the motion
sensor. In some implementations, the mobile device can use
threshold crossing algorithms to analyze the motion signal in
the time domain to determine when the user takes a step. For
example, every time the motion signal crosses a threshold
magnitude (e.g., amplitude, power, etc.) value, the mobile
device can determine that the user has taken a step and
increment a step count.

In some implementations, the mobile device can perform
a frequency analysis to determine a step count. For example,
the mobile device can perform a Fast Fourier transformation
(FFT) on the motion signal to transform the motion signal
from a time domain signal to a frequency domain signal. The
frequency domain signal can be analyzed by the mobile
device to determine frequency having the dominant peak
(e.g., peak associated with largest magnitude). The dominant
frequency can be used to determine the number of steps
taken by the user. For example, if the dominant frequency is
two hertz (2 Hz), then the mobile device can count two steps
per second.

The above mentioned methods of step detection work
well when the mobile device is attached to the user’s torso
(e.g., waist, pockets, etc.) because the dominant forces
detected by the motion sensor and used to determine a step
will correspond to the up and down movement 104 gener-
ated when the user takes a step. However, when the mobile
device is attached to the user’s arm, wrist, or held in the
user’s hand, the dominant forces detected by the motion
sensor can correspond to the arm swing 102. Thus, the force
of the arm swing can interfere with the correct identification
of a step taken by the user. For example, the force of the arm
swing can mix with the force of the user’s step to generate
a motion signal in the time domain that makes the threshold
crossing step detection algorithm inaccurate (e.g., prevents
crossing the threshold). The force of the arm swing can make
the arm swing the dominant frequency causing the fre-
quency based step detection to produce inaccurate results.

FIG. 2 illustrates an example graph 200 of a frequency
domain motion signal generated when the mobile device is
worn on the torso of a user. For example, graph 200 can be
generated when a time domain motion signal (e.g., power
over time) received from a motion sensor is transformed
(e.g., using a FFT) into a frequency domain motion signal.
Graph 200 can have a horizontal axis 202 indicating a range
of frequencies and a vertical axis 204 indicating a range of
power (e.g., amplitude, magnitude, force, etc.). Graph 200
can include line 206 that indicates the power detected by the
motion sensor at each frequency.

In some implementations, the step frequency 208 can be
determined by looking for the dominant frequency within
the pedestrian frequency band. For example, the pedestrian

US 9,459,118 B2

3

frequency band is a range of frequencies corresponding to
the pace at which people normally walk. The pedestrian
frequency band (e.g., 0.4 Hz to 6 Hz) can be determined
empirically. The dominant frequency is the frequency within
the pedestrian frequency band that has the highest power.
The term “dominant peak™ refers to the power of the
dominant frequency and the shape of the frequency domain
waveform at the dominant frequency. For example, peak 208
corresponds to the highest power measurement in graph 200
and is, therefore, the dominant peak. Thus, because fre-
quency 210 corresponds to dominant peak 208, frequency
210 is the dominant frequency in the graph and corresponds
to the frequency at which a user takes a step. In some
implementations, step counts can be generated at the same
frequency as the dominant frequency. For example, if the
dominant frequency is 2 Hz, then two steps will be counted
for every second that passes.

FIG. 3 illustrates an example graph 300 of a frequency
domain motion signal generated when the mobile device is
worn on the arm of a user with a weak arm swing. Graph 300
can be generated when a time domain motion signal (e.g.,
power over time) received from a motion sensor (e.g.,
accelerometer) is transformed (e.g., using a FFT) into a
frequency domain motion signal. Graph 300 can have a
horizontal axis 302 indicating a range of frequencies and a
vertical axis 304 indicating a range of power (e.g., ampli-
tude, magnitude, etc.). Graph 300 can include line 306 that
indicates the power detected by the motion sensor at each
frequency.

In some implementations, graph 300 can have peaks 308
and 310 that correspond to the motion generated when the
user takes a step 308 and when the user swings her arms 310.
For example, peaks and corresponding frequencies that
exceed a peak quality threshold can be analyzed when
determining arm swing compensation. Determining peak
quality is described below with reference to FIG. 7.

As illustrated by graph 300, the dominant peak 308
corresponds to step frequency 312. The mobile device can
determine that dominant peak 308 corresponds to the step
frequency 312 because the dominant peak 308 is not the
lowest frequency peak 310 within the pedestrian frequency
band above the peak quality threshold. In graph 300, the
lowest frequency peak 310 corresponds to the user’s arm
swing, which, in this case, is less powerful than the power
generated by the user’s steps. Thus, because the dominant
frequency 312 corresponds to the frequency of the user’s
steps, no step correction is required to compensate for the
user’s arm swing. For example, when the user wears the
mobile device on her arm, the motion of the arm can be
detected by the motion sensor and can result in the genera-
tion of motion data that can make it difficult to determine a
correct step count. When the power of the user’s arm swing
is less than the power of the user’s step, no step count
correction is needed, as illustrated by FIG. 3 above. When
the power of the user’s arm swing is greater than the power
of the user’s step, the arm swing frequency becomes the
dominant frequency and step count correction is required, as
described further below.

FIG. 4 illustrates an example graph 400 of a frequency
domain motion signal generated when the mobile device is
worn on the arm of a user with a strong arm swing. Similarly
to graph 200, graph 400 has frequency axis 402 and power
axis 404. Graph 400 can be generated when a time domain
motion signal (e.g., acceleration) received from a motion
sensor (e.g., accelerometer) is transformed (e.g., using a
FFT) into a frequency domain motion signal. Graph 400 can
have a horizontal axis 402 indicating a range of frequencies

10

15

20

25

30

35

40

45

50

55

60

65

4

and a vertical axis 404 indicating a range of power (e.g.,
amplitude, magnitude, etc.). Graph 400 can include line 406
that indicates the power detected by the motion sensor at
each frequency.

In some implementations, the need for arm swing com-
pensation can be determined by analyzing the frequency
domain motion signal to determine frequencies having peaks
that exceed a peak quality threshold, to determine the
dominant frequency, to determine that harmonics of the
dominant frequency exist, to determine that the dominant
frequency corresponds to the peak having the smallest
frequency of all peaks above a peak quality threshold, and
that there is another peak at about twice the dominant
frequency.

For example, graph 400 can have peaks 408 and 410 that
correspond to the motion generated when the user takes a
step and when the user swings her arms. For example, peaks
408 and 410 can be located at frequencies within the
pedestrian frequency band (e.g., 0.2 Hz to 6 Hz). As illus-
trated by graph 400, the dominant peak 410 corresponds to
arm swing frequency 412, which, in this case, is more
powerful than the power 408 generated by the user’s steps.
The mobile device can determine that dominant peak 410
corresponds to the arm swing frequency 412 if the dominant
peak 410 corresponds to the lowest frequency peak 410
within the pedestrian frequency band (e.g., 0.2 Hz to 6 Hz)
that exceeds a peak quality threshold value and if there is
another peak at a harmonic frequency that is about two times
the frequency of the dominant frequency. For example, if
step frequency 414 is about twice (e.g., multiplied by about
two) the arm swing frequency 412, the mobile device can
determine that the dominant frequency 412 corresponds to
the user’s arm swing. Thus, because the dominant peak 410
corresponds to the arm swing frequency 412 instead of the
step frequency 414, step correction is required.

For example, when the user wears the mobile device on
her arm, the motion of the arm can be detected by the motion
sensor, which generates motion data that can make it difficult
to determine a correct step count, as described above. When
the power of the user’s arm swing is less than the power of
the user’s step, step count correction is needed because the
dominant frequency can no longer be counted on to provide
an accurate step count. When the power of the user’s arm
swing is greater than the power of the user’s step, the arm
swing frequency becomes the dominant frequency. When
the dominant frequency corresponds to the user’s arm
swing, the step count will be about half of what it should be
(e.g., frequency of the user’s arm swing is about half of the
frequency of the user’s steps) and step count correction is
required.

FIG. 5 illustrates an example process 500 for adjusting a
step count to compensate for a user’s arm swing. At step
502, the mobile device can obtain a motion signal from a
motion sensor configured on the mobile device. For
example, the mobile device can be configured with an
accelerometer that can detect and measure the acceleration
of the mobile device.

At step 504, the mobile device can determine a step count
based on the motion signal. For example, the mobile device
can use threshold crossing or frequency analysis algorithms,
as described above, to determine a preliminary step count
based on the motion signal.

At step 506, the mobile device can transform the motion
signal from a time domain motion signal into a frequency
domain motion signal. For example, the mobile device can

US 9,459,118 B2

5

perform a FFT on the time domain motion signal to generate
a frequency domain motion signal, as described above with
reference to FIGS. 2-4.

At step 506, the mobile device can analyze the peaks of
the frequency domain motion signal to determine whether to
adjust the preliminary step count. For example, the mobile
device can identify the dominant frequency within the
pedestrian frequency band by determining which frequency
has the tallest peak. If the dominant frequency corresponds
to the smallest frequency peak within the pedestrian fre-
quency band and there is a peak at a frequency that is a
multiple of (e.g., about two times) the dominant frequency,
then the mobile device can determine that the dominant
frequency corresponds to the arm swing of the user.

At step 508, if the mobile device determines that the
dominant frequency corresponds to the user’s arm swing,
then at step 512 the mobile device can multiply the prelimi-
nary step count by a factor (e.g., about two) to obtain the
corrected step count and record the corrected step count at
step 514. If, at step 508, the mobile device determines that
the dominant frequency does not correspond to the user’s
arm swing (e.g., the left most frequency is not the dominant
frequency or there is no peak at twice the dominant fre-
quency), the mobile device can record the preliminary step
count at step 514. For example, the mobile device can record
the step count at step 514 by saving the step count to
memory, adding the step count to a previously determined
step count, and/or presenting the step count to the user.

In some implementations, the mobile device can deter-
mine the step count, as described above, for discrete,
sequential windows of time and then add the step count
determined for a time window to step counts determined for
previous windows of time. For example, samples of the
motion signal can be obtained at step 502 using a first
window of five seconds. The five second of samples can be
analyzed as described in process 500 to determine a step
count. After the first window of samples is analyzed,
samples of motion signal can be obtained at step 502 using
a second window of five seconds, analyzed and a step count
determined. The step count determined for the second win-
dow of samples can be added to the step count of the first
window of samples to get a total step count across the two
windows of samples. This process can continue until the
user stops taking steps or until the step counting feature of
the mobile device is disabled, for example.

FIG. 6 illustrates an example process 600 for generating
a composite frequency domain motion signal having “best
quality” peaks, as described in reference to FIG. 7. For
example, process 600 can be performed as part of step 506
of FIG. 5. In some implementations, the processes for
determining that the step count should be corrected for arm
swing, as described above, can be performed by analyzing
windows of motion data. For example, the motion signal
received from the motion sensor can be analyzed in discrete
windows of time (e.g., 5 second windows, 10 second win-
dows, etc.). The window size can have an effect on the
quality of peaks observed when the time domain motion
signal is transformed to a frequency domain motion signal.
Thus, in some implementations, the motion signal can be
analyzed using various windows of time to generate the best
peaks for performing the arm swing step count correction
processes described above.

At step 602, a motion signal can be obtained. For
example, the motion signal can be obtained from a motion
sensor of the mobile device. The motion signal can be a time
domain motion signal that indicates the magnitude of motion
over time.

20

25

30

40

45

55

6

At step 604, the mobile device can obtain a first sample
of the motion signal for first period of time using a first
window function (e.g., a 3 second window). At step 606, the
mobile device can obtain a second sample of the motion
signal for a second period of time using a second window
function (e.g., a five second window). At step 608, the
mobile device can obtain a third sample of the motion signal
for a third period of time using a third window function (e.g.,
a 10 second window). The window functions can be applied
to the motion signal concurrently or sequentially in time or
can be overlapping in time to obtain samples of the motion
signal to analyze when generating a composite frequency
domain motion signal with the best peaks.

At steps 610-614, the mobile device can transform the
time domain motion signal samples for each window of time
into the frequency domain. For example, the mobile device
can perform an FFT or other frequency transform on the
motion signal sample for each window of time.

At steps 616-620, the mobile device can identify the best
quality peaks in the frequency domain motion sample for
each window of time. For example, for some users longer
sample windows will generate better quality peaks. For
other users, shorter sample windows will generate better
quality peaks. Thus, the mobile device can be configured to
analyze motion signal sample windows of varying lengths to
determine the motion signal windows with the best quality
peaks. This approach will capture a wider range of stride
behavior. For example, longer motion signal sample win-
dows will generate better quality peaks for a user with slow
constant pacing in their movement. Shorter motion signal
sample windows will generate better quality peaks for a user
with irregular pacing. A method for determining the quality
of frequency domain motion signal peaks is described with
reference to FIG. 7, below.

At step 622, once the best quality peaks are identified in
each frequency domain motion signal window, the best
quality peaks for each frequency can be merged to generate
a composite frequency domain signal. For example, the best
quality peak for each frequency in the pedestrian frequency
band can be determined from the various frequency domain
motion signal sample windows. The best peaks for each
frequency across the sample windows can be combined into
a composite frequency domain motion signal. For example,
the composite motion signal can include peaks from two or
more sample windows. The best peak for one frequency can
come from a short window while the best peak for another
frequency can come from a long window. The composite
frequency domain motion signal can be used in step 508 of
FIG. 5 to analyze the frequency domain motion signal peaks
and determine if an arm swing is detected.

FIG. 7 illustrates an example graph 700 demonstrating a
“peak quality” calculation. Similarly to graph 200, graph
700 has frequency axis 702 and power axis 704. Line 706 is
the frequency domain motion signal. In some implementa-
tions, the quality of a peak (“quality score™) for a particular
frequency can be determined relative to the power measure-
ments of the frequencies on either side of the particular
frequency. For example, frequency domain motion signal
706 can include peak 708. Peak 708 corresponds to fre-
quency 710 and indicates the power (e.g., amplitude, mag-
nitude of motion, etc.) associated with frequency 710. On
the left of frequency 710 is frequency 712 having corre-
sponding power 714. On the right of frequency 710 is
frequency 716 having corresponding power 718. In some
implementations, the mobile device can calculate the quality
of peak 708 by subtracting the average of powers 714, 718

US 9,459,118 B2

7

at frequencies 712, 716 from the power 708 at frequency 710
and dividing the difference by the power 708 at frequency
710 given by

O=[P(F)-0.5P(L)+P(R)))/P(F)).
Application Programming Interfaces

One or more Application Programming Interfaces (APIs)
may be used in implementations described herein. An API is
an interface implemented by a program code component or
hardware component (hereinafter “API-implementing com-
ponent”) that allows a different program code component or
hardware component (hereinafter “API-calling component™)
to access and use one or more functions, methods, proce-
dures, data structures, classes, and/or other services pro-
vided by the APIl-implementing component. An API can
define one or more parameters that are passed between the
API-calling component and the API-implementing compo-
nent.

An API allows a developer of an API-calling component
(which may be a third party developer) to leverage specified
features provided by an API-implementing component.
There may be one API-calling component or there may be
more than one such component. An API can be a source code
interface that a computer system or program library provides
in order to support requests for services from an application.
An operating system (OS) can have multiple APIs to allow
applications running on the OS to call one or more of those
APIs, and a service (such as a program library) can have
multiple APIs to allow an application that uses the service to
call one or more of those APIs. An API can be specified in
terms of a programming language that can be interpreted or
compiled when an application is built.

In some implementations, the API-implementing compo-
nent may provide more than one API, that provide access to
different aspects of the functionality implemented by the
API-implementing component. For example, one API of an
API-implementing component can provide a first set of
functions and can be exposed to third party developers, and
another API of the API-implementing component can be
hidden (not exposed) and provide a subset of the first set of
functions and also provide another set of functions, such as
testing or debugging functions which are not in the first set
of functions. In other implementations, the API-implement-
ing component may itself call one or more other components
via an underlying API and thus be both an API-calling
component and an APl-implementing component.

An API defines the language and parameters that API-
calling components use when accessing and using specified
features of the API-implementing component. For example,
an API-calling component accesses the specified features of
the API-implementing component through one or more API
calls or invocations (embodied for example by function or
method calls) exposed by the API and passes data and
control information using parameters via the API calls or
invocations. The API-implementing component may return
a value through the API in response to an API call from an
API-calling component. While the API defines the syntax
and result of an API call (e.g., how to invoke the API call and
what the API call does), the API may not reveal how the API
call accomplishes the function specified by the API call.
Various API calls are transferred via the one or more
application programming interfaces between the calling
(API-calling component) and an API-implementing compo-
nent. Transferring the API calls may include issuing, initi-
ating, invoking, calling, receiving, returning, or responding

20

25

30

35

40

45

55

8

to the function calls or messages; in other words, transfer-
ring can describe actions by either of the API-calling com-
ponent or the API-implementing component. The function
calls or other invocations of the API may send or receive one
or more parameters through a parameter list or other struc-
ture. A parameter can be a constant, key, data structure,
object, object class, variable, data type, pointer, array, list or
a pointer to a function or method or another way to reference
a data or other item to be passed via the API.

Furthermore, data types or classes may be provided by the
API and implemented by the API-implementing component.
Thus, the API-calling component may declare variables, use
pointers to, use or instantiate constant values of such types
or classes by using definitions provided in the APIL.

Generally, an API can be used to access a service or data
provided by the API-implementing component or to initiate
performance of an operation or computation provided by the
API-implementing component. By way of example, the
API-implementing component and the API-calling compo-
nent may each be any one of an operating system, a library,
a device driver, an API, an application program, or other
module (e.g., the API-implementing component and the
API-calling component may be the same or different type of
module from each other). API-implementing components
may in some cases be embodied at least in part in firmware,
microcode, or other hardware logic.

In some implementations, an API may allow a client
program to use the services provided by a Software Devel-
opment Kit (SDK) library. In other embodiments an appli-
cation or other client program may use an API provided by
an Application Framework. In these implementations, the
application or client program may incorporate calls to func-
tions or methods provided by the SDK and/or provided by
the API or use data types or objects defined in the SDK and
provided by the API. An Application Framework may in
these implementations provide a main event loop for a
program that responds to various events defined by the
Framework. The API allows the application to specify the
events and the responses to the events using the Application
Framework. In some implementations, an API call can
report to an application the capabilities or state of a hardware
device, including those related to aspects such as input
capabilities and state, output capabilities and state, process-
ing capability, power state, storage capacity and state, com-
munications capability, etc., and the API may be imple-
mented in part by firmware, microcode, or other low level
logic that executes in part on the hardware component.

The API-calling component may be a local component
(e.g., on the same data processing system as the API-
implementing component) or a remote component (e.g., on
a different data processing system from the API-implement-
ing component) that communicates with the API-imple-
menting component through the API over a network. An
API-implementing component may also act as an API-
calling component (e.g., it may make API calls to an API
exposed by a different API-implementing component) and
an API-calling component may also act as an API-imple-
menting component by implementing an API that is exposed
to a different API-calling component.

The API may allow multiple API-calling components
written in different programming languages to communicate
with the API-implementing component, thus the API may
include features for translating calls and returns between the
API-implementing component and the API-calling compo-
nent. However the API may be implemented in terms of a
specific programming language. An API-calling component
can, in one embedment, call APIs from different providers

US 9,459,118 B2

9

such as a set of APIs from an OS provider and another set
of APIs from a plug-in provider and another set of APIs from
another provider (e.g. the provider of a software library) or
creator of the another set of 4PIs.

FIG. 8 is a block diagram illustrating an example API
architecture 800, which can be used in some implementa-
tions. As shown in FIG. 8, the API architecture 800 includes
the API-implementing component 810 (e.g., an operating
system, a library, a device driver, an API, an application
program, software or other module) that implements the API
820. The API 820 can specifiy one or more functions,
methods, classes, objects, protocols, data structures, formats
and/or other features of the API-implementing component
that may be used by the API-calling component 830. The
API 820 can specify at least one calling convention that
specifies how a function in the API-implementing compo-
nent receives parameters 832 from the API-calling compo-
nent and how the function returns a result 822 to the
API-calling component. The API-calling component 830
(e.g., an operating system, a library, a device driver, an API,
an application program, software or other module), makes
API calls through the API 820 to access and use the features
of the API-implementing component 810 that are specified
by the API 820. The API-implementing component 810 may
return a value through the API 820 to the API-calling
component 830 in response to an API call.

For example, the API-implementing component 810 can
include additional functions, methods, classes, data struc-
tures, and/or other features that are not specified through the
API 820 and are not available to the API-calling component
830. The API-calling component 830 may be on the same
system as the API-implementing component 810 or may be
located remotely and accesses the API-implementing com-
ponent 810 using the API 820 over a network. While FIG.
8 illustrates a single API-calling component 830 interacting
with the API 820, other API-calling components, which may
be written in different languages (or the same language) than
the API-calling component 830, may use the API 820.

The API-implementing component 810, the API 820, and
the API-calling component 830 may be stored in a machine-
readable medium, which includes any mechanism for stor-
ing information in a form readable by a machine (e.g., a
computer or other data processing system). For example, a
machine-readable medium includes magnetic disks, optical
disks, random access memory; read only memory, flash
memory devices, etc.

FIG. 9 illustrates an example software stack 900 that
includes various application programming interfaces. As
illustrated by FIG. 9, applications 902 and 904 can make
calls to Service A 906 or Service B 908 using several Service
APIs 910-916 and to Operating System (OS) 918 using
several OS APIs 920-922. Service A 906 or Service B 908
can make calls to OS using several OS APIs 920-922.

Note that the Service B 908 has two APIs 912 and 914,
one of which, Service B API 1 912, receives calls from and
returns values to Application 1 902 and the other, Service B
API 2 914, receives calls from and returns values to Appli-
cation 2 904. Service A 906 (which can be, for example, a
software library) makes calls to and receives returned values
from OS API 1 920, and Service B 922 (which can be, for
example, a software library) makes calls to and receives
returned values from both OS API 1 920 and OS API 2 922.
Application 2 904 makes calls to and receives returned
values from OS API 2 922.

Example System Architecture

FIG. 10 is a block diagram of an example computing
device 1000 that can implement the features and processes

10

15

20

25

30

35

40

45

50

55

60

65

10

of FIGS. 1-9. The computing device 1000 can include a
memory interface 1002, one or more data processors, image
processors and/or central processing units 1004, and a
peripherals interface 1006. The memory interface 1002, the
one or more processors 1004 and/or the peripherals interface
1006 can be separate components or can be integrated in one
or more integrated circuits. The various components in the
computing device 1000 can be coupled by one or more
communication buses or signal lines.

Sensors, devices, and subsystems can be coupled to the
peripherals interface 1006 to facilitate multiple functional-
ities. For example, a motion sensor 1010, a light sensor
1012, and a proximity sensor 1014 can be coupled to the
peripherals interface 1006 to facilitate orientation, lighting,
and proximity functions. Other sensors 1016 can also be
connected to the peripherals interface 1006, such as a global
navigation satellite system (GNSS) (e.g., GPS receiver), a
temperature sensor, a biometric sensor, magnetometer or
other sensing device, to facilitate related functionalities.

A camera subsystem 1020 and an optical sensor 1022,
e.g., a charged coupled device (CCD) or a complementary
metal-oxide semiconductor (CMOS) optical sensor, can be
utilized to facilitate camera functions, such as recording
photographs and video clips. The camera subsystem 1020
and the optical sensor 1022 can be used to collect images of
a user to be used during authentication of a user, e.g., by
performing facial recognition analysis.

Communication functions can be facilitated through one
or more wireless communication subsystems 1024, which
can include radio frequency receivers and transmitters and/
or optical (e.g., infrared) receivers and transmitters. The
specific design and implementation of the communication
subsystem 1024 can depend on the communication net-
work(s) over which the computing device 1000 is intended
to operate. For example, the computing device 1000 can
include communication subsystems 1024 designed to oper-
ate over a GSM network, a GPRS network, an EDGE
network, a Wi-Fi or WiMax network, and a Bluetooth™
network. In particular, the wireless communication subsys-
tems 1024 can include hosting protocols such that the device
1000 can be configured as a base station for other wireless
devices.

An audio subsystem 1026 can be coupled to a speaker
1028 and a microphone 1030 to facilitate voice-enabled
functions, such as speaker recognition, voice replication,
digital recording, and telephony functions. The audio sub-
system 1026 can be configured to facilitate processing voice
commands, voiceprinting and voice authentication, for
example.

The 1/O subsystem 1040 can include a touch-surface
controller 1042 and/or other input controller(s) 1044. The
touch-surface controller 1042 can be coupled to a touch
surface 1046. The touch surface 1046 and touch-surface
controller 1042 can, for example, detect contact and move-
ment or break thereof using any of a plurality of touch
sensitivity technologies, including but not limited to capaci-
tive, resistive, infrared, and surface acoustic wave technolo-
gies, as well as other proximity sensor arrays or other
elements for determining one or more points of contact with
the touch surface 1046.

The other input controller(s) 1044 can be coupled to other
input/control devices 1048, such as one or more buttons,
rocker switches, thumb-wheel, infrared port, USB port,
and/or a pointer device such as a stylus. The one or more
buttons (not shown) can include an up/down button for
volume control of the speaker 1028 and/or the microphone
1030.

US 9,459,118 B2

11

In one implementation, a pressing of the button for a first
duration can disengage a lock of the touch surface 1046; and
a pressing of the button for a second duration that is longer
than the first duration can turn power to the computing
device 1000 on or off. Pressing the button for a third duration
can activate a voice control, or voice command, module that
enables the user to speak commands into the microphone
1030 to cause the device to execute the spoken command.
The user can customize a functionality of one or more of the
buttons. The touch surface 1046 can, for example, also be
used to implement virtual or soft buttons and/or a keyboard.

In some implementations, the computing device 1000 can
present recorded audio and/or video files, such as MP3,
AAC, and MPEG files. In some implementations, the com-
puting device 1000 can include the functionality of an MP3
player, such as an iPod™. The computing device 1000 can,
therefore, include a 36-pin connector that is compatible with
the iPod. Other input/output and control devices can also be
used.

The memory interface 1002 can be coupled to memory
1050. The memory 1050 can include high-speed random
access memory and/or non-volatile memory, such as one or
more magnetic disk storage devices, one or more optical
storage devices, and/or flash memory (e.g., NAND, NOR).
The memory 1050 can store an operating system 1052, such
as Darwin, RTXC, LINUX, UNIX, OS X, WINDOWS, or
an embedded operating system such as VxWorks.

The operating system 1052 can include instructions for
handling basic system services and for performing hardware
dependent tasks. In some implementations, the operating
system 1052 can be a kernel (e.g., UNIX kernel). In some
implementations, the operating system 1052 can include
instructions for adjusting a step count to compensate for the
user’s arm swing. For example, operating system 1052 can
implement the arm swing compensation features as
described with reference to FIGS. 1-9.

The memory 1050 can also store communication instruc-
tions 1054 to facilitate communicating with one or more
additional devices, one or more computers and/or one or
more servers. The memory 1050 can include graphical user
interface instructions 1056 to facilitate graphic user interface
processing; sensor processing instructions 1058 to facilitate
sensor-related processing and functions; phone instructions
1060 to facilitate phone-related processes and functions;
electronic messaging instructions 1062 to facilitate elec-
tronic-messaging related processes and functions; web
browsing instructions 1064 to facilitate web browsing-re-
lated processes and functions; media processing instructions
1066 to facilitate media processing-related processes and
functions; GNSS/Navigation instructions 1068 to facilitate
GNSS and navigation-related processes and instructions;
and/or camera instructions 1070 to facilitate camera-related
processes and functions. The memory 1050 can store other
software instructions 1072 to facilitate other processes and
functions, such as the arm swing compensation processes
and functions as described with reference to FIGS. 1-9.

The memory 1050 can also store other software instruc-
tions 1084, such as web video instructions to facilitate web
video-related processes and functions; and/or web shopping
instructions to facilitate web shopping-related processes and
functions. In some implementations, the media processing
instructions 1066 are divided into audio processing instruc-
tions and video processing instructions to facilitate audio
processing-related processes and functions and video pro-
cessing-related processes and functions, respectively.

12

Each of the above identified instructions and applications
can correspond to a set of instructions for performing one or
more functions described above. These instructions need not
be implemented as separate software programs, procedures,

5 or modules. The memory 1050 can include additional
instructions or fewer instructions. Furthermore, various
functions of the computing device 1000 can be implemented
in hardware and/or in software, including in one or more
signal processing and/or application specific integrated cir-
cuits.

What is claimed is:

1. A method comprising:

obtaining, by a mobile device, a first step count for a user

of the mobile device based on a motion sensor signal

provided by a motion sensor of the mobile device;
generating a frequency domain motion signal based on the
motion sensor signal;

analyzing peaks of the frequency domain motion signal

within a pedestrian frequency band to identify a domi-
nant frequency of the motion sensor signal, the ana-
lyzing including determining that the dominant fre-
quency corresponds to a lowest frequency peak within
the pedestrian frequency band and has a peak that
exceeds a threshold value, and determining that another
peak within the pedestrian frequency band corresponds
to a harmonic frequency that is a multiple of the
dominant frequency;

detecting that the user is wearing the mobile device on the

user’s arm based on the analysis; and

in response to the detecting, multiplying the first step

count by a factor to calculate an adjusted step count,
where the method is performed by one or more hardware

processors.
2. The method of claim 1, wherein the adjusted step count
is about twice the first step count.
3. The method of claim 1, wherein the threshold value is
based on power measurements at frequencies in the pedes-
trian frequency band that are above and below the dominant
frequency.
4. The method of claim 3, wherein the threshold value is
determined by subtracting an average of the power mea-
surements from a power measurement at the dominant
frequency.
5. The method of claim 1, wherein generating the fre-
quency domain motion signal comprises:
sampling the motion sensor data using a plurality of
sample windows associated with different time periods;
identifying, based on a quality score, a quality peak for
each frequency within a pedestrian frequency band
across the plurality of sample windows; and

combining two or more quality peaks having the highest
quality scores to generate a composite frequency
domain motion signal.

6. The method of claim 5, wherein identifying, based on
55 a quality score, a quality peak for each frequency within a
pedestrian frequency band across the plurality of sample
windows, further comprises:

generating a first quality score for each of plurality of first

peaks of a first frequency domain motion signal sample

associated with a first time window;

generating a second quality score for each of a plurality of

second peaks of a second frequency domain motion

signal sample associated with a second time window;
comparing each of the first quality scores to a correspond-
ing one of the second quality scores to identify the
highest quality scores, where each of the first and
second quality scores are associated with a frequency.

10

20

25

30

40

45

50

60

65

US 9,459,118 B2

13

7. A non-transitory computer-readable medium including
one or more sequences of instructions which, when executed
by one or more processors, causes:
obtaining, by a mobile device, a first step count for a user
of the mobile device based on a motion sensor signal
provided by a motion sensor of the mobile device;

generating a frequency domain motion signal based on the
motion sensor signal;

analyzing peaks of the frequency domain motion signal

within a pedestrian frequency band to identify a domi-
nant frequency of the motion sensor signal, the ana-
lyzing including determining that the dominant fre-
quency corresponds to a lowest frequency peak within
the pedestrian frequency band and has a peak that
exceeds a threshold value, and determining that another
peak within the pedestrian frequency band corresponds
to a harmonic frequency that is a multiple of the
dominant frequency;

detecting that the user is wearing the mobile device on the

user’s arm based on the analysis; and
in response to the detecting, multiplying the first step count
by a factor to calculate an adjusted step count.

8. The non-transitory computer-readable medium of claim
7, wherein the adjusted step count is about twice the first step
count.

9. The non-transitory computer-readable medium of claim
7, wherein the threshold value is based on power measure-
ments at frequencies in the pedestrian frequency band that
are above and below the dominant frequency.

10. The non-transitory computer-readable medium of
claim 9, wherein the threshold value is determined by
subtracting an average of the power measurements from a
power measurement at the dominant frequency.

11. The non-transitory computer-readable medium of
claim 7, wherein the instructions that cause generating the
frequency domain motion signal comprise instructions that
cause:

sampling the motion sensor data using a plurality of

sample windows associated with different time periods;
identifying, based on a quality score, a quality peak for
each frequency within a pedestrian frequency band
across the plurality of sample windows; and
combining two or more quality peaks having the highest
quality scores to generate a composite frequency
domain motion signal.

12. The non-transitory computer-readable medium of
claim 11, wherein the instructions cause:

generating a first quality score for each of plurality of first

peaks of a first frequency domain motion signal sample
associated with a first time window;

generating a second quality score for each of a plurality of

second peaks of a second frequency domain motion
signal sample associated with a second time window;
comparing each of the first quality scores to a correspond-
ing one of the second quality scores to identify the
highest quality scores, where each of the first and
second quality scores are associated with a frequency.

20

25

30

35

40

45

14

13. A mobile device comprising:

a motion sensor;

one or more processors; and

a non-transitory computer-readable medium including

one or more sequences of instructions which, when
executed by one or more processors, causes:

obtaining, by the mobile device, a first step count for a

user of the mobile device based on a motion sensor
signal provided by the motion sensor of the mobile
device;

generating a frequency domain motion signal based on the

motion sensor signal;

analyzing peaks of the frequency domain motion signal

within a pedestrian frequency band to identify a domi-
nant frequency of the motion sensor signal, the ana-
lyzing including determining that the dominant fre-
quency corresponds to a lowest frequency peak within
the pedestrian frequency band and has a peak that
exceeds a threshold value, and determining that another
peak within the pedestrian frequency band corresponds
to a harmonic frequency that is a multiple of the
dominant frequency;

detecting that the user is wearing the mobile device on the

user’s arm based on the analysis; and

in response to the detecting, multiplying the first step

count by a factor to calculate an adjusted step count.

14. The mobile device of claim 13, wherein the adjusted
step count is about twice the first step count.

15. The mobile device of claim 13, wherein the threshold
value is based on power measurements at frequencies in the
pedestrian frequency band that are above and below the
dominant frequency.

16. The mobile device of claim 15, wherein the threshold
value is determined by subtracting an average of the power
measurements from a power measurement at the dominant
frequency.

17. The mobile device of claim 13, wherein the instruc-
tions that cause generating the frequency domain motion
signal comprise instructions that cause:

sampling the motion sensor data using a plurality of

sample windows associated with different time periods;
identifying, based on a quality score, a quality peak for
each frequency within a pedestrian frequency band
across the plurality of sample windows; and
combining two or more quality peaks having the highest
quality scores to generate a composite frequency
domain motion signal.

18. The mobile device of claim 17, wherein the instruc-
tions cause:

generating a first quality score for each of plurality of first

peaks of a first frequency domain motion signal sample
associated with a first time window;

generating a second quality score for each of a plurality of

second peaks of a second frequency domain motion
signal sample associated with a second time window;
comparing each of the first quality scores to a correspond-
ing one of the second quality scores to identify the
highest quality scores, where each of the first and
second quality scores are associated with a frequency.

#* #* #* #* #*

